Alternation Is Strict For Higher-Order Modal Fixpoint Logic
نویسنده
چکیده
We study the expressive power of Alternating Parity Krivine Automata (APKA), which provide operational semantics to Higher-Order Modal Fixpoint Logic (HFL). APKA consist of ordinary parity automata extended by a variation of the Krivine Abstract Machine. We show that the number and parity of priorities available to an APKA form a proper hierarchy of expressive power as in the modal μ-calculus. This also induces a strict alternation hierarchy on HFL. The proof follows Arnold’s (1999) encoding of runs into trees and subsequent use of the Banach Fixpoint Theorem.
منابع مشابه
The alternation hierarchy in fixpoint logic with chop is strict too
Fixpoint Logic with Chop extends the modal μ-calculus with a sequential composition operator which results in an increase in expressive power. We develop a game-theoretic characterisation of its model checking problem and use these games to show that the alternation hierarchy in this logic is strict. The structure of this result follows the lines of Arnold’s proof showing that the alternation h...
متن کاملFixpoint alternation: Arithmetic, transition systems, and the binary tree
We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.
متن کاملThree notes on the complexity of model checking fixpoint logic with chop
This paper analyses the complexity of model checking Fixpoint Logic with Chop – an extension of the modal μ-calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIMEcomplete. This is already the case for its alternation-free fragment. Th...
متن کاملThe Arity Hierarchy in the Polyadic $\mu$-Calculus
The polyadic μ-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic μ-calculus: for every level of fixpoint alternation...
متن کاملA Measured Collapse of the Modal µ-Calculus Alternation Hierarchy
The μ-calculus model-checking problem has been of great interest in the context of concurrent programs. Beyond the need to use symbolic methods in order to cope with the state-explosion problem, which is acute in concurrent settings, several concurrency related problems are naturally solved by evaluation of μ-calculus formulas. The complexity of a naive algorithm for model checking a μ-calculus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016